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THE STABILITY OF ROTATION OF A SATELLITE RING* 

V.V. BELETSKII and E.M. LEVIN 

The stability of steady rotation of a closed flexible filament, closed in 

a ring around an attracting centre is investigated as a function of the 

filament extensibility. Characteristics ensuring the stability of rotation 

of the ring are determined. These do not correspond to Hooke's law. The 

results are used to investigate the stability of steady rotation of a 

large number of artificial satellites connected in series along the orbit 

in a ring by weightless cables of variable length. A wide class of 

control laws is indicated for the tension of the connecting cables that 

ensure the stability of the satellite ring. An analogy in the dynamics 

of meteor and satellite rings is described a modelofameteorring formedbythe 

equivalent flexible ring having a defined law of extensibility is proposed. 

The problem of the motion of a ring round an atrracting centre was first formulated by 

Laplace /l/ in connection with the observation of Saturn's rings. Laplace demonstrated the 

instability of its rotation on a model of absolutely rigid homogeneous ring, and he determined 

the equilibrium form of its cross section using the model of a ring of incompressible fluid. 

Subsequently Kovalevskaya /2/ studied the form of a liquid ring. Following Laplace, Maxwell 

showed /3/ that rotation of rigid rings with an inhomogeneous mass distribution is, as a rule, 

unstable. The rotation of rings of incompressible fluid also proved to be unstable. As a 

possible model of a stable ring Maxwell proposed a system of large numbers of material points 

of the same mass. In steady motion all points dispose themselves at the vertices of a regular 

polygon whose centre is the attracting centre. The stationary rotation of a ring of N points 

of common mass m is stable to a first approximation when the following condition /3/ is 
satisfied: 

m < 2,298MN-' (0.1) 
where M is the mass of the central body. 

Recently, interest in continuous rings (in the sense of Laplace's initial assumptions) 

has been revived. It is assumed that electric power space stations, enterprises, and human 

settlement may be connected in rings around the Earth /4/, for which a flexible filament, 

linearly stretchable, is taken as the model of an artificial ring. The filament is in the 

form of a closed circle, whose rotation is unstable for any modulus of elasticity of the 

filament.**(**Independentlyof/4/ an analytic proof of instability was given by A.I. Morozov 

and A.M. Fridman who drew the attention of the authors to this problem.) The analysis of 

the motion of elastic rings to some extend complements the investigation of Laplace and 
Maxwell. The motion of a solid ring of present-day materials cannot be well approximated by 

the motion of a rigid ring /5/. The instability of uncontrolled elastic rings indicates the 

need for control. A very complex version of a stabilizing control was proposed in /4/. Below 
an alternative version, constructed using the example of natural rings is considered. It is 
distinguished by the simplicity of its construction. 

1. Consider a homogeneous flexible and extensible filament in the form of a closed ring 

located in a field of a stationary attracting centre 0 to which is attached the inertial 
system of coordinates OXYZ. The usual equations of dynamics of a filament are /6/ 

8% p atr = -$- (2%) - p/&w-a (1.1) 

where r (6, t) is the radius vector of a point of the filament at the instant of time t,s is 
a natural parameter measured along the filament in some initial state (not necessarily stressed), 

O<S<l,l is the initial length of the filament, 

as) I ar/as I-1 
T is the tension ofthefilament, 'F = (&/ 

is the unit vector of the tangent to the filament line of curvature, p is the 
mass per unit length of the filament, and p is the gravitational constant of the attracting 
centre. Eq.(l.l) must be supplemented by the conditions of closure of the filament inaring. 

r (0, t) = r(l, t), z (0, q-g (I, t) 

and the dependence of the tension T on the filament elongation y 

W) 
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T = T (y), y = 1 cwas 1 (1.3) 
Eqs.(l.l) and (1.2) admit of a uniform rotation of the filament in a stationary plane 

along a circle of constant radius with centre at the point 0. This is the state of apparent 
rest /6/, to which there corresponds by virtue of (1.1) a constant tension along the filament. 

T = T, = P(O*R* - pR-') (1.4) 
where R is the radius of the circle, and o is the angular velocity of rotation. We will 
assume that the filament is subjected only to tension T,>O to which there corresponds 

R > R,where R, = (PLO-“)‘I* is the radius of a circular Keplerian orbit that corresponds to the 
angular velocity 0. The natural parameter s is measured at the initial state of apparent rest. 
We require (1.3) and (1.4) to be consistent when "# = 1: T(l)= T,. 

We shall formulate the problem of stability as follows: what should the relation between 
the filament tension and its elongation (1.3) be for the steady rotation of the filament to be 

stable? Note that according to the results in /4/ Hooke's law T = T, -I- R(y- 1) leads to 
instability (in this formula E is the modulus of elasticity of the filament, and E> T, since 

y=l- T,E-‘>O must correspond to the unstressed state T = 0). 

2. We introduce the system of coordinates Oxyz which rotates at the angular velocity o 

about the Oz axis perpendicular to the plane of steady rotation of the filament. In steady 
rotation the ring is stationary relative to the Ozyz axes. The equations of small oscillations 

about the position of equilibrium with respect to the Oxyz axes have the form 

b (u” - 2v' - 3u) = u" - (2 + a) u - (1 + a) V' 

b (u” + 2~') = (1 + a) U' + ad, 

b (w” + W) = w + u)’ 

a +-($)y=l, b=F 

(2.1) 

The dot and prime denotes differentiation with respect to the non-dimensional time 'c = ot and 

the angle cp = s/R, which replaces the natural parameter s, and s, 0 < cp.< 2n, and n((P, T)? u (% 
.c),w((p,z) are, respectively, the radial, transversal, and axial displacement of the point rp 

of the filament at instant z relative to its position in steady motion. There are two 

dimensionless parameters a and b in Eq.(2.1). By virtue of (1.4) we have T,<pd’R’ and 

b>l. The region a>l corresponds to Hooke's law T = T,f E(y- i), E> T, where we have 

instability /4/. 

Let us investigate the region l>a> --oo. 

Particular solutions of the linear equations with constant coefficients (2.1) are sought 

in the form u = Uf,os(62~+ urp),v= Vsin(622 + acp),w = 0 for oscillations in the Ory plane, 

and in the form U= u = 0, w = Wcos(Qz + q) for oscillations in the Oz direction. The 

condition of closure of the filament into a ring (l-2), equivalent to a 2n periodicity with 

respect to cp, yields u=n an integer. For axial oscillations the characteristic equation 

bQa = b - 1 + ns (2.2) 
is independent of the control law (1.3), and by virtue of b>l has for all integral n two 

different real roots Q. This shows that the ring is stable relative to axial displacements 

to a first approximation. 
Let us consider the characteristic equation of oscillations in the plane of steady rotation 

of the ring 

(XP + 3b - a - 2 - n”) (b9* - an*) - (2bQ - (1 + a) n)” = 0 (2.3) 
If for all integral n Eq.Cz.3) has four different real roots 8, it means stability of 

the ring to a first approximation relative to displacements in the plane of steady rotation. 

If (2.3) has complex roots for some n, then such roots form complex conjugate pairs by virtue 

of the real coefficients in (2.3). In that situation we have an exponentially growing solution 

and the ring is unstable to a first approximation. When the sign of R changes the roots g 

also change sign, it is sufficient to consider only non-negative n. 

When n = 0 we obtain Q,,, = 0, Q,,, = +1/l -I- (2 + a)lb. The solutions U = Cl, u = c, + 

c,r (2 + a - 36)/(23), cl,% = const, which define the transition to steady rotation that can be as 

close as desired to the initial, corresponds to zero roots. Such a transition does not affect 

the stability relative to radial displacements. The values of S&,, are real and different, 

and the form n = 0 is steady when a>-2- b. In the region a<-2-b, which is denoted 

by crosses in Fig.1, the form n=O is unstable, and we have the possibility of increasing 

compression or widening of the circle, as a whole. 

Consider the case when n>O. Emergence from the stability region on its boundary is 

characterized by the appearance of a pair of multiple real roots 8. Hence at the stability 

boundary the left hand side of (2.3) may be represented in the form b2(Q -p)“(g -Q)(D -r), 
where p.q,r are real numbers. This representation gives the equation of the stability boundary 

in parametric form 
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2p + q + r = 0, 3p” - qr = (2 + a + b + .* + an*)& (2.4) 

Pa - pqr = 2n (1 + a)lb 

plqr = ne (an9 - 1 - 3ab)lba 

Using (2.4), the boundaries of stability region were numerically determined for n<20 
and for higher forms n>i asymptotic formulae were obtained which are in good agreement 
with numerical calculations, beginning at approximately n = 10. In Figs.l-3 the stability 
regions are shown shaded, and for convenience of representation the scales in regions a<0 

and a> 0 are different. 
When n= i (Fig.1) the boundaries CB and EF become the curve (I= i/b and the straight 

line a = -0,037b, as b-co, and the coordinates of point E are 0= -1, b= 9. For n>i the 
stability regions have a universal form, as for n=5 in Fig.2. The boundary CB becomes the 

curve (1 = lib, as b-co and boundary CA becomes the straight line b=(n*+ i) (3-n-2)-1 as s-m; 
the ordinate of point D when n>l is n-2 with an accuracy of within n-'; the boundary 

0,06 

a 

0 

a 

l&o4 

Fig.1 Fig.2 Fig.3 

FGH is close to the curve n=41/5(30- i)+ i - 78. b= bn-* when ns>i, point C has the 
coordinates D = 9 (4$ - 1)-l, b = (~9 + i + 0,25n-*)(3 - 0,75@)-r, and points E, F, and G which lie 
on the line a= --1 have as abscissas br= ($+1)/3, bF s= 9aa-i&44ntm. On increasing n 
by unity, the stability region is displaced, as shown'in Fig.2 by the dashed line for n=l3. 

As can be seen in Figs.1 and 2, the nature of the stability and instability in regions 
a> lib and a< 0 is entirely different. In regions a> l/b we always have an instability 
of the form n= 1, and when b>>l all forms up to a certain number n,z JR% are also 
unstable. On the other hand, in the region a<O, when b> 1 the lower forms are stable 

up to the number n,=:$%,when O>a>-Va,or n,z T/VP, ~=41/3a2+a-77a-1,whena~ 
--'I,. This difference is important in applications that will be considered below in Sects.3 
and 4. Stabilization of the whole infinite set of forms n=0,1,2,... is impossible for 
reasons shown above, neither in region a> lib, nor in a<<. However, in the narrow band 
O<a<l/b there exists a stability region of the ring in all forms. It is shown in Fig.3 
shaded,andconsists of separate diamond-shaped fragments joined at points C,. Each fragment 
is formed at the intersection of stability regions for n and n-/-l between points C,, and Cn+r, 
as shown in Fig.2 for the example of n = 5 and n = 6. These fragments all.lie inside the 
stability regions for all n. 

This is shown by numerical computations and the following reasoning. Consider the curve 

b = (1 + a)'/(4a) (9.5) 

which passes through all points C,, and all fragments. On curve (2.5) the left-hand side 

p (Q) of Eq.(2.3) for cr<0,0358,n>O has the properties P (*m)= + -.P"(*&&)<O, P(nvJi)= 
0. It follows from this that (2.3) has four real roots for any n. At points C,, the root 

ti=n1/* is multiple and these points lie at the stability boundary. Non-multiple roots 
that are inside the stability region correspond for all n to points (2.5) that lie between 
the points C,. 

Outside the hatched region in Fig.3 a ring of flexible filament is, thus, unstable, while 
in the hatched region it is stable to a first approximation. The complete proof of stability 
using energy integrals and angular momentum is known for the rotating ring from an inextensible 
filament and when there is no external field /7/. This is a limiting case a=m,b=i 
relative to the parameters a and b. The presence of an attracting centre (b>i) alters the 
picture considerably. Proceeding as in /7/ it is not possible to obtain a complete proof 
of stability, since the reduced potential energy has a maximum and stabilisation has a 
gyroscopic character. 

3. Let us now consider some applications. It was established above that in the region 

a,<0 a ring a flexible filament is stable in lower forms n<n,. Instability in such a 
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ring only appears in higher forms n> n,. The model of a ring a flexible filament is adequate 
for a real satellite ring in lower forms, but in higher forms does not reflect its dynamics. 

Consider thefollowinganalogue of Maxwell's problem: a large number of N material points 
(satellites) of the same mass m, are successively connected in a circle by weightless cables 

of variable length. The satellites are numbered in the order of their connection by the 

numbers k=l, . . . . N. The equations of motion relative to the inertial axes OXYZ have the 

form 

dark 
ml- = Tkrk - Tk-lZk-l - miprkrk-’ (3.1) 

where rk(t) iS the radius Vector Of the k-th satellite, Zk-(rk+l-rk) Irk+1 - rk 1-l is the unit 

vector of the direction from the k-th to the (k+ I)-st satellite, and Tk is the cable tension 
between the k-th and the (k + I)-st satellites. Eqs.(3.1) admit of uniform rotation of the 

ring in a stationary plane when the satellites are arranged at the vertices of a regular N- 

polygon whose centre is at the point 0. The tension in all cables is the same and defined by 

Tk = T, = m,A,-'(oW - @-I), A* = 2R sin (n/N) (3.2) 

where R is the ring radius , 0 is its angular velocity, and A* is the distance between adjacent 

satellites. 

Eqs.(3.1) and (3.2) are discrete analoguesof (1.1) and (1.4), and the law of extensibility 

(1.3) in the discrete formulation acquires the clear meaning of the same law of tension control 

T(A) for all cables, which depends on the distance between adjacent satellites 

Tk = T (&), fh = 1 rktl - rk 1 (3.3) 

Such control can be realized if every satellite has a supply of spare cable and a device 

for pulling-in and releasing the cable. 

Equations of small oscillations of satellites relative to the rotating axes &yz are 

similar to (2.1), and the finite differences 

b (Ut” - 2vk’ - 3%) = I/, Ctg’ E (Uk+l - ,?hk + U&l) - (3.4) 
2Uk - '/.a &+I + 2% + Uk-1)--‘/r(f + a)Ctg8(Uk+, - V&1)x 

b (Ilk” + hk’) = I/, (I + a) Ctg E (%%+I - uk-I) + 

‘I4 CZ Ctg' E (Vk+1 - 2Vk + V&l) + l/d (2uk - uk+l - %I) 

b (Wk” + wk) = wk + I/& sin-’ 8 (wktl - 2wk f wk-I) 

correspond to derivatives with respect to rp. In these formulae z+(z), vk (.c), wk (T) are the 

radial, transverse and axial displacements of the k-th satellite relative to its position in 

steady motion. 

In complete analogy with (2.1) the particular solutions of (3.4) are obtained in the 

form uR = uCos(82 + nqpk), vk = Vsin (% + nqR), u)k = 0 of oscillations in the Ozy plane, and 

in the form uk = vk = 0,~~ = WCos(Q~ + ncp,) for oscillations in the direction of OZ and R 

is an integer 1 n I<N/2, qk = 2nklN! The characteristic equation for axial oscillations 

bW = b - 1 + sina (n.s) sin% (3.5) 

has for all n by virtue of b> 1 two different real roots, which means stability in relation 

to axial displacements to a first approximation. The characteristic equation for oscillations 

in the plane of steady rotation of the ring 

IbW + 3b - a - 2 + (a - ctg* e) sin* (ne)] x (3.6) 
[bW + (1 - a ctg* e) sin 2 (ne)] - 
[2bP - (1 -I- a) ctg E sin (ne) cos (ne)P = 0 

is the same as (2.3) strictly for n= 0, and accurate to small _ (n/N)' for n< N. 
The ring oscillations of connected satellites are, thus, well defined in the lower forms 

by the flexible ring model. However, unlike the filament ring, the ring of connected satellites 

has a finite number of degrees of freedom, and for it 1 nl <N/2. The higher oscillation 

forms in which the filament ring shows instability at a< 0, do not eltist in a ring of 

connected satellites. Using the results of Sect.2, in region a<0 it is necessary and 

sufficient to a first approximation of the ring of connnected satellites to have the highest 

possible form n = N/2 for even N and n = (N- I)/2 for odd N. Substituting into (3.6) for 

even N ne = n12 and ne = (1 - l/N) n/2 for odd N, we obtain a quadratic equation in Qa strictly 

for even N and with an accuracy to small -1/N for odd N. The condition for the existence 

in this equation of four different real roots Q is expressed with an accuracy to small -WN' 

in the form 



b$>fi(a)= - 1 %, - 73 < a < 0 
41/3aa+a--a-l, a<-lla 

or in initial notation 
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(3.7) 

T.<+& (3.3) 

The rotation of a ring of connected satellite can thus be stabilized by controlling the 
tension of the connecting cables. The nominal tension in the cables T, mustnot exceed the 
critical value (3.81, while in perturbed motion the tension in the cables must diminish or 
remain constant when the distance between two connected satellites dTldA<O increases. 
Maintaining the tension in the cables constant is the simplest means of stabilization. 

Consider the stability region represented in Fig.3. For real values of b>l it has a 

very narrow width Au zl/(2b 1/s), which in practice does not enable one to use the respective 
control laws. 

4. Note the analogy between artificialandnaturalrings. If we take T = Gm12A-2(G 
is the universal gravitational constant) as the law of tension, we obtain a model of a material 
ring, similar to Maxwell's model, but which takes into account the gravitational interaction 
only between the nearest bodies. Substituting into (3.8) the values a = -2, T,= Gm12(2R sin 
(n/N))-a that correspond to that model, we obtain (accurate to small quantities) the con- 
dition of stability 

m < 2,42MN-21 (4.0 
which differs from Maxwell's condition (0.1) obtained allowing for the gravitational inter- 
action of all bodies; here m = m,N is the overall mass of the ring and M is the mass of the 
central body. The closeness of these results shows that inthemotion of a meteoric ring the 
interaction between the nearest bodies is the deciding factor, and the stability is dependent 
on "negative elasticity" i-e. the decrease intheinteraction force between the bodies of the 
ring as the distance between them increases. Thus, the stable rings of attached satellites 
are dynamically similar to meteoritic rings and are natural prototypes for arificial rings. 

In turn, the investigation of artificial rings leads to an unexpected aspect of natural 
rings. If in the model of Sect.3 with the law (3.3), T =Gm,2A-e, corresponding to a meteoric 
ring, we pass to the limit iv--t 00 with m,N =const, then (3.1)-(3.6) become the corresponding 
Eqs.(l.l)-(2.3) for the equivalent filament that obeys the law of extensibility 

T = Gp2ya (4.2) 

where p is the mass per unit of length of the ring in steady rotation, and y is the relative 
elongation of a section ofthering. This analogy with filaments is completely natural when 
one considers the separate narrow rings in the system of rings of Saturn, Uranus, or Jupiter. 

The values a = -2, b,- 2nMlm correspond to model (4.2). According to Sect.2 such a ring 

is stable in lower forms of oscillations of wavelength h>h,zR~2nfl(-2)mlM. For real 
rings /8/ the values of h, are less than the width of the rings AR. However, the model of 
the equivalent filament is certainly inapplicable for defining shortwave oscillations h&AR 
of a meteoric ring, when it is not possible to consider as an infinitely thin filament. 
Hence, the model of an equivalent filament gives, within the limits of its applicability, 
the stability of meteoric rings, that corresponds to reality. Shortwave a< h, instability 
lies beyond the limits of applicability of the model and bears no relation to reality. 

Model (4.2) can be used to describe long-wave forced oscillations of meteoric rings. 
Thus, the observable eccentricity and precession of rings may be considered as excitation of 
the form n=l. 

1. 
2. 
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4. 
5. 

6. 
7. 

REFERENCES 

LAPLACE P.S., On the figure of the ring of Saturn. Celestial Mechanics. 2, 1966. 
KOVALEVSKAYA S-V., Supplements and notes on Laplace's investigation of the rings of Saturn. 

In: Kovalevskaya S.V. Scientific Nqrks. Moscow, Izd. AN SSSR, 1948. 
MAXWELL J.C., On the stability of the motion of Saturn's rings. In: The Scientific Papers 

of J.C. Maxwell. Hermann. l., 1927. 
BREAKWELL J.V., Stability of an orbiting ring. J. Guid. and Control, 4, 2, 1981. 
FRIDMAN A.M., MOROZOV A.I. and POLYACHENKO V.L., The destruction of a continuous ring 

revolving around a gravitating centre. Astro-Phys. and Space Sci. 103, 1, 1984. 
SHCHEDROV V.S., Fundamentals of the Mechanics of a Filament. Moscow, Mashgiz., 1961. 
KUZ'MIN P.A., Stability of a filament of circular form with a denumerable set of degrees 

of freedom. Tr. Kazansk. Aviats. Inst., Issue 22, 1949. 



136 

8. ESPOSITO L.W., 0 CALAGHAN M. and WEST R.A., The structure of Saturn's rings: implication 
form the Voyager stellar occultation. Icarus. 56, 3, 1983. 

Translated by J.J.D. 

Rfif U.S.S.R,,Vol.50,No.2,pp.l36-141,1986 0021-8928/86 $10.0O+0.00 
Printed in Great Britain Q 1987 Pergamon Journals Ltd. 

ON THE ROTATIONAL NOTION OF A SOLID CARRYING A VISCO-ELASTIC DISC IN 
A CENTRAL FIELD OF FORCE* 

N.E. BQLOTINA, V.G. VIL'KE and YU.G. MARKOV 

The motion of a mechanical system consisting of a symmetrical solid and a 
round plate (disc) located in the equatorial plane of the ellipsoid of 
inertial of the solid is considered. It is assumed that the centreofmassof 
the system moves in a circular orbit in a Newtonian field of force. The 
disc flexural deformation, accompanied by the dissipation of energy, are 
the cause of the development of rotational motion in the system. Approxi- 
mate equations that define this development are obtained, using the method 
of motion separation and of averaging /l-3/. The averaged equations that 
define the evolution in Andoyer variables are similar to the equations 
that describe the evolution of motions of a satellite with flexible visco- 
elastic rods located along the axis of symmetry of the satellite /3/. 

Letthesystem of equations CZ,X~X, be rigidly attached to a symmetric solid Cx, is the 
axis of symmetry), and let a disc be located in the plane CRUX,. The radius vector of any 
point on the disc is defined by 

r = w1 4 x3e2 + m3, xl = r ~09 8, 5, = rsin e 

0 g r g U, 0 < e < zn, (x,, XJ E (;1 = (32 + xsp"< a2} 
(1) 

where w(r, 8,t) is the displacement of points of the elastic disc along the axis cs, during 
bending, e, (i = 1, 2, 3) is the unit vector of the axis Cxf, and r,8 are the polar coordinates 
in the region Q. 

Consider the problem when the centre of mass C describes around the attracting centre 0 
a circular Keplerian orbit of radius R and the bending oscillations of the disc do not affect 
its motion. We introduce the system of coordinates C&$,&, moving translationally, and the 

cg, axis is orthogonal to the plane of the orbit. The radius vector of the centre of 
attraction has in system C&f& the projections (R cos o&R sin a&O), where o. is the orbital 
angular velocity. Let p be the gravitational constant of the Newtonian field; then o,,% = 

pR-3. 
We will henceforth assume that the description of the deformed state of the disc conforms 

to the usual assumptions of the linear theory of small deflections of thin plates. In 
particular, when considering the deflection of a disc of constant rigidity D, the potential 
energy functionals of elastic deformations and of dissipative forces are defined by the 
formulae /4/ 

where A is the Laplace operator, D is the bending rigidity of the disc, and E,v are the 
modulus of elasticity and Poisson's ratio of the material, respectively, h is the disc thick- 
ness, assumed constant, and "/, is a coefficient that takes into account the dissipation of 
energy of deformation. The region of definition of the above functionals (2) is the Sobolev 
space w,"(Q). The second relation in (2) assumes that the dissipative functional D [w'l is 
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